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Binary Classification : support Vector Machines are a solution to the binary
classification problem with geometric origins .
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Binary Classification : Use a feature map to :X-'H such that tow
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Definition :

A Reproducing kernel Hilbert Space (RKHS) over a set X
is a Hilbert space of 112461 - valued functions such that engl

-
-

gKl
is a continuous linear functional for all xex
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As such
,

Riesz representation guarantees for all xe X a

function Kx such that fix, -- tf
,

Kx ) for all felt
.

The kernel function at x will be denoted Katy
-

-Ny .H .

Theorem : suppose K is a symmetric , positive definite kernel on a set X .

Then

there is a unique Hilbert space with K as its kernel.



For a given holomorphic function f :E- ¢ define
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For the real version we take
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Dynamical System : x. Hi = fix ) ; ftp.IIR

We encode trajectories with

occupation kernels and the

dynamics via Liouville operators.



Dynamical System : x. HI = fix ) ; filth .- pi

Definition : Given a function f:X-YR
"

and H a RKHS over the set X

we define the Liouville operator with

symbol f as As :DomHtt→H given by
Aug) Ig - f

,

where D.Htt : -- Iget :O.g.felt}.



Definition
'

.
Let X - R

"

be compact.
H be a RKHS of continuous functions

over X
,
and V:[0,17→ X be a

continuous trajectory .

The functional

g.
→ lightthat

is bounded and may be represented
as lightHdt -- Lg, 177.

.

heat
map of an occupation kernel for a spiral trajectory .

Here we call the function
.
The H

,

the occupation kernel for htt.



Occupation kernels :

' Occupation kernels have representation in terms of the kernel

Given V'to.TT→ Rn
.
Tfw - like,ntndt.

' If we define IT
.

I?Klxihtildt for Teco, TI then the mapping th Th. is
continuous in the Hilbert space norm .

- If there exists a homotopy IK's between two paths then the mapping
Sh Pr

.

is continuous in the Hilbert space norm .



Occupation kernels :

' Since linear combinations of kernel functions are dense in the RKHS

then linear combinations of occupation kernels are as well. In fact, take

V:lo,THR
"

; Htt : -- x then Pr --ftkly.xidt-TK.ly) .

- Lett in Gr :
-

- Kiri .tn. .
be the occupation kernel Gramian for a set of paths

Hii!
. .

Gif Klx
,
x'I = exp tallx-x'll:L then the condition number := III estimates for Gr

are comparable to the condition number estimates for Gramians for Gaussian RBF's .

' The dmin is dependent on the path separation distance q.i.kz?i.iEe....,lhHtI - Krull.

Gr
.



System Identification :
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The SINDY Algorithm

Brunton et
.

al
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Integrating Non - linear systems data via Occupation kernels

suppose Ntl is a trajectory satisfying the dynamics Htt -- final

%
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For a compact set Xc Rn, let {rico ,
TI-X be a collection of trajectories

satisfying the dynamics x -- fun -- E. Oi Yi KI and let B.. be the corresponding occupation
kernels inside a RKHS

,

H
,

of continuously differentiable functions over X. Suppose that
kiss? - X is dense

.

Constraints on Oi are established as

(Atk lo .

Csl
,
Pr;). = II. OilAyikt , Csl, Pr;). -- Khs. ht. Csl -KH; lol, Csl

for each s =/
,
2,3

,
. . . .

,
j -- l, 2 . . .

. .

N
.

(Ayek lo ,

Csl
,
Pr;). -- I! KHAI , Cd YeHttHdt



#Trajectories us
.
Error
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Robustness to Noise

Methods like SINDY require error prone numerical derivative estimates .

However under mild smoothness conditions the error introduced by a bounded
zero mean disturbance EeLYlo

, THR
"

) is OCT. ok ) ) for the occupation kernel
method

.
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Motion Tomography
Goal : Reconstruct a vector field using its accumulated effects on mobile sensing units

as they travel through the field.

We have anticipated

straight line paths .



Motion Tomography
Goal : Reconstruct a vector field using its accumulated effects on mobile sensing units

as they travel through the field.

The vehicles are
then influenced by
the flow - field and

stray from the

anticipated paths .



Motion Tomography
Goal : Reconstruct a vector field using its accumulated effects on mobile sensing units

as they travel through the field.

From this information

we aim to construct

the vector field
.



Let r : lo, TI-R
'

represent the continuous path for a mobile sensor attempting to travel
in a straight line but subject to an unknown flow - field F.Re R'→ R2

,
where

R is a compact subset .

Let ittf sKosta , sin lost t FIrl , with s >o and F locally Lipschitz , represent the
true dynamics.

As the flow field is unknown the anticipated dynamics are given as it -- second , sin 1015
After a vehicle has traveled through the flow- field over a time period lo

,
IT
,

during which there is little to no knowledge of the vehicles position the difference

between the actual location
,
r th
,
and anticipated location , TITI , is given as

D= rt ) - FAI -- Lilith - EHH dt -

- I?Firth) dt -- LF, 177,

true



Let Isi 3.ii. Hisii. be a collection
of speeds and angles used to generate
the anticipated trajectories .

After the initial data collection no further

experiments are needed to approximate
the flowfield

.

Since
. representation of the flow field

is in terms of occupation kernels we

have access to the approximation

powers of RKHS 's .



Theorem : With taxi -- KK
,N
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exp talkin the minimal eigen - value of G.
= Kth.

.

I?!!!
is bounded by

Amin Z 4am Mgi¥ . T
.

with Mi- 127%
,
C- Mika and %, :=I7÷÷... Ht. HI - KK .

Theorem : Under the same conditions as the above dmax ENTE lol
.

dmax EN 771.. ..nl Elr.# - r;kill dtdt



To prove convergence we found sufficient conditions to apply the contraction mapping
theorem

.

We make the assumptions that our process starts reasonably close to the
true solution and that the true flow field F is not unreasonably strong .

We also assume Nra - Pdt, is small where Ps is the occupation kernel for a straight line
trajectory and 11 Pre - the Hf CT119 -HI

..
i.e

. trajectories do not differ wildly from
straight paths and that close flow fields produce similar trajectories .



Experiments :

For an artificial experiment we used the flow - field given by

FIN - Ys tf
,
HI f. IN IT

f. KI -- 5 exp talk - IN -

.
2 exp l - H x - IN t 2 exp l - Hx -Billy - 5 exp tall x - k¥1117

f. IN =3 exp thx - 1117 - exp I - H x - 41117 - sexpl-sllx-EI.lk/texptHx-lYiilllY



We then generated a set of points and angles to serve as our
anticipated trajectories.



These are our results after only 10 iterations
.

,

1

This was done using Gaussian RBF's with a kernel width of µ
-

-

'Iso
.



We can visually see the difference .

#

Some additional information :

To generate the paths we used RK4 and computed integrals with Simpson's Rule.
We used 10,11 as our timeframe

,
a constant speed of L

,
and a stepsize of h -- O .

0L
.



Comparison of methods

Chang et . al. Kernel method



Real Example : For a real experiment we used 2013 Gliderpalooza data graciously
shared by Chang et . al containing initial, final, and anticipated
positions for 31 sequential trajectory segments each lasting a fixed
time

.



Since our algorithm is designed to run on several trajectories we broke the single
trajectory into 31 separate segments.

In the absence of ground truth, we will simply remark that the algorithm seems
to converge .

In this example we used exponential kernels. Kk
, yl -- exp I

' I
,

with

a parameter value of µ -

- to
,
ooo

.



Kernel Method

Chang et al



Current Frontiers : Dynamic mode decomposition is a dimension reduction technique
centered on finding the eigenmodes of a dynamicalsystem .

Overview :

Use data to project the identity ontofind eigenfunctions
span {Oi }

9. LA. 44=9. (Xd Xj Gidi Riko )

cast the finite -

- di Clik;)
dimensional non-

linear system
as a comp. op ke

Here
,
Xin -

- FIXit where F is called a flow map .
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Occupation kernels interfaces well with DMD

"

Liouville
"

mode



Higher order systems :

j = fix ,
Z ( X Mt

. } Requires numericalE-- Cz
.
.

ftz.it estimation of derivatives

We'd like to find a way to gain the same benefits as before .



Recall some key elements

We have a RKHS of observables get .

tightHdt gets encoded as a linear functional Lg, 177.
.

Htt -- forth Kat Igor# = ghhthfHAD so the dynamics are encoded as an operator As. .

We built methods around

Afg , Pr =L
"

girth f-HAD dt
-
-

g
NAH -gHoll

.



Redux

We have a WRKHS of observables 4g HI -- gluth .

tmall.TT- Hm- 'glrtthdt gets encoded as a linear functional Lg, 177..

Htt -- forth Ietgo htt -- Hiottfiftiethdtftagllhthhholtfiflnthd.tt so the dynamics are encoded
as an operator Bf .

We built methods around

Big, Tf
"

+,

= ITT- ti Big Hdt = YINKI - YING - T Yoko) Not



Thanks !
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